AD=A091 578

UNCLASSIFIED

UNION COLL AND UNIV SCHENECTADY NY INST OF ADMINISTR==ETC F/6 12/1
GENERAL RESULTSs TIME SERIES IN M DIMENSIONS. (U}

SEP 80 L A AROIANs J SCHMEE NOOO1l4=77=C=D438
AES=8006 NL




—y orT—— r ey ey o TR Ty er—vrr

v, . -
W e e S et st a A e o g - e .

: r.
’ ) (/) ct*mca\ Yo(«'h ‘

| B

/ GENERAL‘BESULTS,‘?IHE SERIES IN M DIHENSIONS.l
v = = = = =

~ -

1(— Leo A./Aroian -am# Josef/Schmee |

W&
ion €ollege -and Umiversity \ O C;‘ K

Institute of Administration and Management
___Schenectady, New York 12308 ‘“}J

—

..  12) 8 ;’.///.f?s T W C

! ABSTRACT

\

'E»General results in the theory of time series in m dimensions are obtained,

' thus providing a broad view applicable to the various models. The inter-
relationships among the various types of moving average models, MA, and auto-
regressive models, AR, and the general ARMA autoregressive moving ayerage .. .
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General results in the theory of time series in m dimensions are determined.
These are: definitions of moving average, MA, models; autoregressive, AR,
models; and autoregressive moving average, ARMA models; stationarity and
invertibility; the characteristic function:; the autocovariance and auto-
correlation function; the power spectrum; properties of MA, AR, and ARMA
models; the partial autocorrelation function; estimation; and a brief look at
the multivariate problem. Simulation and forecasting are considered by
Aroian and Taneja (1).

Important assumptions are outlined below: The characteristic of an event is
Zoer X ™ (xl,xz,...,xm),t, —ocx<m, x=-{ = (xl-ll,xz-iz,...,xm-im). Weak

stationarity is assumed in time and space as a minimum assumption:

- 2 - 2
wp = Elz, )= 0, o) = E(z, ,-u,)
2 2
Eax,t =0, Ua > 0, pl,k = {E(zx'tzx-['t-k))/az’

L = (11,12,...,2m).

All second order moments exist. Note x may be any coordinate system; if x is
dropped, the time series is the usual one at a point; if t is dropped, then
the series is purely spatial. Note £ may be plus or minus but k is plus
except in forecasting.

MODELS
The MA model is defined:

x,t = nz-" lgl u’n,k'x-ﬂ t-k+ax t’ (2.1)

n = (nl'"Z”"'"m)' n-!-- ni=-e “een :_, '

2

is an i.1i.4. variable with mean zero, 02 > 0, Ea

a,t a x.t'x-l.t-k =0,
unless L = k = 0, Usually
q r .
-psn<q, lgksr, L “;_p k&1 Yo, k%, t-k*tax, ¢’ (2.2)

an MA model of temporal order r, spatial order Py 49y in each spatial variable
Xy lgigm. As an example m = r = 1;
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CORRECTIONS

GENERAL RESULTS: TIME SERIES IN M DIMENSIONS

1. P2 111 ~ o<t <@ not 0 <ct< e

2. P3 equation (3.7) replace by:

2%,t 3 (- E E Yo,k Fx B t)d
! a=0 n=-q k=1 ’

3. P3 equation ( 3.11), replace by:

n k)d

l _ <o
z (BysByday,¢ = dz (3L &% Fx Bl fx,t

=
X, t

4. P4 equation (3.14) in denominator:

2
wn,k not Wn,k
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Ze,t =703, 1-17%2%1 61 2 e, (2.3)
replacing the y's by 6°'s.
The AR model is defined:
(2.4)

Zx,t ’n-zm kzl ‘n,kzx+n,t-k+ax.t'

temporal order r if lsksr, spatial order P;+9; . —qsnsp, in each variable, x

: !
lzi<m. An example is o

zx,t = olzx,t-l*’fx-l,t-l*'x,t ¢ (2.5)
The ARMA model is defined:
zx,t = ng-p kzl ¢n,kzx*n,t-k- nx-u kzl en,k‘x+n,t—k*ax,t (2.6)

of order r+s in the temporal domain, q+p, and u+v in each spatial variable.

The general case would be =-»<n<~, )<t<e, This model is denoted by ARMA
(r,s:p,q:;u,v). An example is:
€

e (2.7)

Zot T 1%y, e-1%22x-1,6-17%1%, ¢-17%28%1, 02 %2, ¢

All the preceding are univariate cases.

Practical examples for m=1l are the flow characteristics of a river or a
manufacturing process; for m=2, the characteristics of a process in the plane
such as storms, social or economic processes, geological and geographical
processes in time including earthquakes; and for m=3 processes in space such
as weather processes, sunspots, communications, satellite tracking, and oil
exploration.

PROPERTIES OF MA, AR, AND ARMA MODELS

An MA model is stationary, and invertible dependent on wn K’ and its represen
tation as an infinite AR model. Define '

-1
Btzx,t zx.t-l'rt = Bt ! Bxizx,t = zx—éi,t ’ (3.1)
-1 1=]
F =B ", §. = (6.,,6 eve s ) 6, = .
X xg i i1’°42’ im’ *7ij§ c)i#j)
Rewrite (2.2) in terms of (3.1).
k
T T A S o N LI (3.2)

n
2, I P

n n

where F) = (1, F,
1 m

The characteristic function is

¥ n_k
v ) =10 35 v FRBY (3.3)

= y=1
and ay ¢ 4 (Bx'at)zx.t . (3.4)
m

For invertibility (3.3) must converge on Si ix-m

where S, = {Bt:|8t|<1), s.; " {Bxi:|sx|<1),
(3.%)

s; = {F, :lPx |>1}, 1gism.
i i
Define Yok " E(zx,t’x-l.t-k)' the autocovariance between z, ¢ and Byt t-k®

Theorem 3.1. The autocovariance function of an MA process may be found by
multiplying (2.2) by 2z__ .+ Where L = (11,...,lm),and taking expectations:
or better, the autocovlrfakch ' function Y
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2
r(e,.B.) = Oa?(Bx.Bt)V(Fx.Ft). (3.6)
. - L.k -2 -k . 2 .
and v, , is the coefficient of both B B, and B, "B, with v, = o, being the
coefficient of B:ag 2 1, Theorem 3.1 may be used to find Py R T " for

’
MA, AR, and ARMA models. The autocorrelation function is nol s§mmetri@ inm
dimensions; it is symmetric to the origin x = 0, t = 0. Thus p,q ® 0_,q Ppy*

P0-x’"gk = P-og-k’ but p, ¥ to ¢_,v P0x ¥ byoe For me=l, p,p will have the

same values in the first and third quadrants, and the second and fourth
quadrants. For m=2, four sets of equal o's occur. In m variable similar
results hold, as reported in Perry's ongoing Ph.D. thesis. An important cut-
off property for the MA models is given by:

Theorem 3.2. The autocorrelation function for a finite MA model is finite.
Use theorem 3.1 for the proof. This cutoff property is an important way of
determining where a process is MA, AR, or ARMA.

Theorem 3.3. If the conditions for invertibility are satisfied, every finite
MA process in m dimensions may be expressed as an infinite AR model. From

(3.4)
? i

-n=-q k#1 wn,kr

a = {

n.k, d
x,t th) z 0<ds= , (3.7)

and condition (3.5) must be satisfied.

Theorem 3.4. The power spectrum. Let Bt = exp-2Tif, Bx = exp-ztigj, in the
autocovariance function, theorem 3.1, the power spectrumjof an MA process is:

pl{f.,qg) = 20§V(exp-2nif, exp-27mig) ]
¥ (exp2rif, exp2rig) (3.8)
= 2ci|V(exp-2nif, exp-Zvig)IZ
0s£ls1/2, Oslgjlsl/Z, lgj<m.
Next AR processes are considered.

Theorem 3,5. The autocorrelation function of an AR process is found by
multiplying (2.4) by Zo 7. t-k and take expectations. For ¢ =k = 0
’

2 2 -1
92 © 0a{l'n-gp kgl ®n,kn,k} (3.9)

Note ai > 0, and

°x,t 'n-gp kzl ®n,k°x4n,t-k ° (3.10)

Replace x,t by m,n. Note p satisfies the same form as (2.4) for all {%,k},
except £ = k = 0, The autoégtrelation (cross correlation) function may be
plotted in m+l dimensions and is infinite in extent. As & or k or both
approach :=, the corresponding o's approach zero, provided the ¢'s are such
that the AR process is stationary. The difference system needs some Pox to
start the process,

Theorem 3.6. 1I1f conditions for stationarity (3.5) are satisfied, every
finite AR process may be represented by an infinite MA process.

Proof: From {(2.4)

2 (z:on'ku:at)d a (3.11)

® o-l(nx"t)’ x,t

x,t x,t -

0sdse

Theorem 3.7. Por invertibility of an MA model |B lsl,lnﬁlsl in (3.3) set

equal to zerc restricting On k(wn,k)' For AR restrictiofis on b x the same
. ’

method is used in the corresponding characteristic equation of the AR model




g =

n, k
netq k51 0o, kBaBr) (3.12)
This theorem may also be stated for the MA(AR) models, or in fact for the
ARMA model. The roots of the characteristic equation must lie outside the
unit circle in each variable B, when all other B's are set to one. This
condition holds as ltationarit} in m dimensions, m+l variables, requires
stationarity in every direction in the m+l variables.

O(Bx.Bt) = (1

Theorem 3.8. The power spectrum for an AR process is:
p(£,g) = 202 |6 (exp-2nif, exp-2nig)| 2
a (3.13)
0s |f] 172, 0 ¢ Igj| $1/2, 1 ¢35 ¢<m.
Note the similarity to (3.8).

Theorem 3.9. Given an AR process to determine p , it is necessary to first
find the corresponding MA expansion of the AR pr%é@ss. Then

_Cim _ nE-e k50 Yn,k¥n+likem

m C 2
oo n=te k80 ik

where CQ m is the covariance E(z

o, (3.14)

x,tzx-i,t-m)' This is very important since

the recu;rence relationship of Pem given by (3.10) does not provide a way of
finding all the p, m- An AR model may be simulated given {¢n k}' If this is
’ ’
done a set of estimated ®m.n are found. The true values are found fromQB.14) .
’

THE PARTIAL AUTOCORRELATION FUNCTION

One of the most important questions that must be faced is the choice of m.
Usually spatial considerations make clear the value of m. Otherwise choose
that m which minimizes 02, but theoretical considerations should have the
greater weight. If m is“given, how is r the order determined? For the MA
mode]l use the cutoff property of the autocorrelation function. For the AR
model the cutoff property is provided by the partial autocorrelation function.
For ms0, it is known that the last coefficient ¢_ in an AR model with terms
Dyevest is a partial coefficient of correlationfand more importantly or+i.
i'> r afe all zero. AR models in m dimensions have a similar property.

For r=1 in m dimensions m+l "last" coefficients ¢ will be partial coefficients
of correlation, non-zero, but all other ¢'s would be exactly zero. 1In
samples of n, n large these other ¢'s will tend to be small instead of being
exactly zero as in the theoretical model.

The definition for the partial coefficient of correlation for AR models is
¢ij ¥ 0 for i=1,2,...,m, 3I=1,2,...¥r, -1 ¢ ¢ir $ 1 and oij =0 for i > m,

J > r. For any AR models for Qij' i >m, i > r, one may prove ¢ij = 0.
YULE-WALXKER EQUATIONS, AR MODELS

The Yule-Walker equations for AR models in m dimensions will be given.
Suppose

Tyt ™ 1%, e-1%02%x01, 1% 0 (5.1)

Multiply (5.1) by the coefficients of °1 and 02, take expected values and
obtain the Yule-Walker equations

Po1 = *1*¢2°10

P11 = ¢1P10%¢2 ¢ (5.2)
which solved for 01 and LY

6 = (0g3=011Pq0)/ (1=03¢)
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b, = (011-001010)/(1-010). (5.3)

This is the usual least squares used in regression. Hence the Yule-Walker
eguations in m dimensions for any order r may be found by the same method.

Thus the Yule-Walker equations will be of the form p = P ¢, p and ¢ are
column vectors and Pp is the matrix of correlations. By  the usual least

squares theory

ve) = n"ta-olerp;! (5.4)
and if we substitute the sample values r for p then

viey = nta-rlesgt

1 1l r
r = (r°1,r11), Rz = 10)
1

r

10 L -

ol = (¢.,0.), RIY = (1-r2 )71 9, (5.5)

17420 Ry 10 e 1
10

V(eysey) = n " (org 6,or 1 0,0R, )

2 . 6% = p7l(1-r?

2
o% -
Ql ¢2 10

-1 ~2 4 A
) (1'¢l'¢'2 2@‘102!10) ’

and o% ¥y = X4 Th;g method is general and if a, . are distributed

normaliy the estimates ¢ are asympototically unbiased, consistent and approx-
imately the maximum likelihood estimates; Perry and Aroian (2), Arcian and
Taneja (1) have extended this method to the MA and ARMA models.

ARMA MODELS

Denote the characteristic equation of the MA model by O(Bx’Bt) and that of the
AR model by °(Bx'3t)’ then

O(Bx,Bt)z = G(Bx,Bt)a (6.1)

xX,t X,t

Bx = (Bx By ,...,Bx ), an m dimensional ARMA model of order (r,s:;p.q:u,v).
m
Now (6.1) may be written as an infinite MA model:

-1
zx,t = e(axpat)o (Bx,Bt)ax't . (6.2’
or as an infinite AR model
-1
L O(Bx,Bt)O (B,(,B‘,_)zx't . (6.3)

Both results are important, particularly (6.2), since it is useful in finding
P . and in forecasting z .11.22 > 0. The restrictions on oy and 6i

m,n x+L ,t+22
for invertibility and ctationirity of (6.1) are exactly those of the MA and

AR model jointly as given in theorem 3.7. An example is given for m=l, r, =

r., = 2 in Aroian and Taneja (1). The autocovariance functions is a combi&a-
tfon of those of the MA and AR models. The partial autocorrelation is similar
to that of the MA model.

The power spectrum is:

2
2 |6(e 2nif, exp-2niq)
P(f,g) = 20, |0(¢xp-2w1f.oxp-2nig)|z (6.4
0s |f]l s1/2, 0% ngjl €172, 1 ¢ x’ £ m,

The ARMA model may differ markedly from either the MA or AR model.
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MULTIVARIATE AR MODELS
A brief description of the Aefinition of an AR multivariate model is given:

P (7.1)

2P - o(P")zp-i,t-j*’x,t ’

x,t x

where x is the vector x = (xl,xz,...,xm), ¢(p,r) is a matrix of Oij'l of p
rows by rp columns, zg e column vector of p components, ’5—i t-3° a column
’

’
vector of rp components, and ’5,: a column vector of p components, a multi-
variate AR (p,m,r) model. The properties of the model, with an example p=2,

m=r=1,. are given by Aroian (3).
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